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SPATIAL DISTORTION OF MEAN BOUNDARY LAYER BY NATURAL OSCILLATIONS 

N. A. Zheltukhin and N. M. Terekhova UDC 532.526 

i. One of the stages in the nonlinear growth of disturbances in the transition region 
of an incompressible boundary layer on a flat plate is the generation and subsequent growth 
of three-dimensional oscillating field as a result of which disturbances are found to have 
clearly defined spatial structure with alternating maxima (crests or peaks) and minima (val- 
leys) of amplitudes in the transverse direction (along z axis). Reasons for the appearance 
of such natural wave structure have not yet been explained conclusively. One of them could 
be the interaction of the initial finite amplitude plane disturbances with small, local, spa- 
tial nonuniformities in the mean flow, which leads to the generation of a pair of oblique 
Tollmien--Schlichting waves [I]. Natural weak disturbances in the leading edge region can al- 
so be the source of subsequent real Wave fields. 

Subsequent triple-wave resonant interaction in the nonlinear growth region of plane 
waves lead to the amplification of three-dimensional components [2, 3]. Thus, it was shown 
in [4] that on attaining the threshold amplitudes K d ~ 0.007 there is a strong growth of 
oblique waves so that the characteristic disturbance field of the boundary layer takes the 
form of an additive field of Tollmien--Schlichting waves: 

u'  (x, g, Z, t) --~ • (g) e "~ ~- 2• (g) e'q~ cos fJz, 

v' (x, g, z, t) = ~d Vd (g) eal § 2• (g) e "q2 cos ~z, 

�9 Q2 w' (x, g, z, t) = 2x~tw~ (g) e sin ~z, 

(i.1) 

where ~i = iai(x -- C1t), ~2 = i~2(x -- C2t). The inclination of oblique waves to the plane 
flow is determined as 8 = arctan B/~. The presence of such characteristic disturbances leads 
to a qualitative change in the structure of the mean flow, viz., minimum values of mean veloc- 
ity at crests and maximum values at valleys are observed. This is interpreted as the appear- 
ance of a system of localized streamwise vortices in the boundary layer which are periodic 
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along the z axis and stationary (or quasistationary) in time (Benny--Lin vortices). A study 
of secondary vortex fields has been carried out in a number of papers [5-7] using weak non- 
linear theory. It is shown that the presence of weak three-dimensionality Kd >> Kt acti- 
vates weak horseshoe vortex occupying the position determined by the half-period of the waves 
(i.i) 0 < Bz < 7. An increase in the growth parameter Kt makes this secondary structure com- 
plex, and whe~ K t >> ~d the vortex structure is described hy a system of counter-rotating 
vortex pairs. Such a limiting case is considered in [8] on the basis of a numerical solution 
of Reynolds equation for the mean flow which made it possible not only to establish the quan- 
titative dependence of vortex formation on mt but also to compute streamwise components of 
mean velocities that was not done in the above-referenced studies. 

The present study, which has been carried out for waves of the type (i.i), extends and 
defines the application of the model based on the Reynolds equation to describe complex sec- 
ondary flows during transition. 

Thus, in the flat plate boundary layer on which the mean flow is described by the 2. 
equation 

~nnn + ~ n n  = 0,~1 = y(Uo!2VX) l/z, Uo = ~n,  (2.1) 

= ~ n = O ( n = O ) ,  ~ n ~ i ( ~ ) ,  

natural oscillations (i.I) appear in the region of the nonlinear growth of disturbances. 
Amplitude functions of the waves u, v, and w satisfy the linearized Navier--Stokes equations 
[9]. In order to simplify the analysis, we assume that the phases of ~z and ~= are equal or, 
as shown in [7], the introduction of frequency disparity in waves of different scales that 
results in a 10-15% difference in phase velocities C: and C2 is not significant. However, we 
note that such a difference can be introduced through the phase difference A~, which will be 
present in equations as a coefficient. 

The secondary flow induced in (i.i) takes the form of spatial flow U = U(n, z), V = 
V(n, z), and W = W(n, z) and is described by the system 

VUn + W U  z - -  (t/Re)(Unn + Uzz ) = --fl; (2.2a) 

VV n + WVz  i p n - - - ~  aq Oz ' ( 2 . 2 b )  

V W  n + WW~ + P~ - -  l-~ (W~m + W~:) = 
o <v'w'> a 

0 q Oz ' 
V n + W~ = O. 

The right-hand sides contain Reynolds stresses obtained statistically by averaging respective 
second moments whose form ,is concretized below. The similarity parameter is the transverse 
coordinate and the equations themselves are nondimens$onalized with respect to the reference 
velocity Uo and the boundary layer thickness ~. 

According to [i0], the zone of spatial growth of disturbance and the establishment of 
associated secondary flows are on the order of ~. The present study looks at the region be- 
yond this zone. The closure of (2.2) is carried out within the framework of monoharmonic ap- 
proximation [3], i.e., for the fundamental harmonic of the type (I.i). 

System (2.2) can be split and it is possible to find streamwise vortices with components 
V and W independently from the curve U(q, z). As shown in [8], it is completely justified 
to neglect convective terms in (2.2b) for the amplitude K t ! 0.01 (0 - ~/6) which makes it 
possible to bring Eq. (2.2b) for the stream function V = ~z and W =--~n to the form 

I ( o ~ o ~ ~ 
~--~ ~ 0-~1 ~ + ~Tz~ ) , + FO] , z ) =  O. (2.3) 

The total moment of forces due to Reynolds stresses F(q, z) is made up of the generative ac- 
tion of three-dimensional waves Ft and the moment Fdt caused by the nonlinear coupling of 
two- and three-dimensional waves, and for (i.i) it is written in the form 

where 

F (~1, z) = x ~ " ~  (N) sin 2 [~z Jr •  ~ 0]) sin [3z, 

(2.4) 
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Here the amplitude functions are given within angular brackets and are rewritten in the fol- 
lowing manner 

2 2 2 2 <w~> = wr  + u,~. <vw> = viw~-- v~w+, <v~> = v. + v~, 

S i n c e  ( 2 . 3 )  i s  l i n e a r ,  i t s  s o l u t i o n  i s  w r i t t e n  i n  t h e  form 

~(~, z) = T~(~]) sin 2~z + ~ , ( q )  sin ~z, 

and the amplitude functions satisfy the following equations 
-- 2 

(D ~ 4~) ~ % = -- • Re ~ (n), 

(D = - -  ~ ) 2 T d T =  --XTXd Re ~-~d T (n). ( 2 . 5 )  

The boundary-value problem for (2.5) is determined from physical conditions 

V = W =  0 ~r  q = 0andV, W - - ~ 0  ~r  ~ - + o o .  

The first two conditions make it possible to determine 

~T = ~ d r  = DTT = D~dr  = 0 ~r ~] = 0, (2.6a) 

and the two second conditions are replaced by asymptotic relations which, for large q, can be 
written in the form 

Ll~w = L2~dr = D L I ~ T  : D L 2 ~ d r  = O. ( 2 . 6 b )  

Here  L~ = D 2 + 4B(D + B),  L2 = D 2 + B(2D + ~) .  The u p p e r  b o u n d a r y  q = Y, a s  a r u l e ,  c o r -  
r e s p o n d e d  t o  ( 1 . 5 - 2 ) 8 1 a m .  E q u a t i o n s  ( 2 . 5 )  and ( 2 . 6 )  d e t e r m i n e  t h e  v o r t e x  componen t s  o f  t h e  
s e c o n d a r y  f l o w  V(q,  z) = 2B~T c o s  2~z + B~dT cos  ~z,  W(q, z) = - -~ 'T  s i n  2Bz -- ~ ' d T  s i n  $z.  
The p e r i o d  o f  s p a t i a l  r e p e t i t i o n s  s h o u l d  be  c h o s e n  so t h a t  T = 2 ~ / $ .  The s t r e a m w i s e  compo- 
n e n t  C(q ,  z) i s  d e t e r m i n e d  i n  t h e  r e g i o n  [0 j ~ j Y, 0 J z j T] f r o m  ( 2 . 2 a )  and b o u n d a r y  
conditions 

u(0,  ~) = u ~ ( r ,  ~) = 0, {~,  ~ }  (n, 0) = {u ,  u~} (n, T). 

The r i g h t - h a n d  s i d e  o f  f~ makes i t  p o s s i b l e  t o  d e c o u p l e  t h e  f o l l o w i n g  a c t i v e  wave componen t s  
of (l.l) : 

three-dimensional distortion of U by three-dimensional waves 

2~ <u~w~>) cos 2~z, 

three-dimensional distortion due to wave interaction 

hd~ = • < ~  >n + <~va>n + ~ <~w~ >) cos ~z, 

two-dimensional distortion due to two- and three-dimensional waves f~d = K2T<UTVT>q + 
~=d<UdVd>q/2~ Here, <uv> = UrV r + uivi, <uw> = uiw r -- UrW i. In the absence of disturbances, 
(2.2a) determines laminar distribution of Uo if forces f:o =-~/Re are introduced on the 
right-hand side. Thus, finally, f~ = f~T + f~d + f~dT + f~o. 

3. The realization of the above problem can be illustrated by modeling secondary flows 
arising in the regions close to critical Reynolds number based on linear theory. As shown 
in studies on the nature of bifurcation of Navier--Stokes equations [3, ii], the nonlinear 
growth of waves in this region only marginally alters Re,, so that the choice of waves with 
eigenvalues corresponding to neutral disturbances in this region is justified. 

Figure 1 shows amplitude functions of generating forces ~(q) along with the quantities 
<uv>~ and <uw>, from which it is possible to get the components of f~ (solid lines represent 
three-dimensional waves and dashed lines indicate two- and three-dimensional waves). The 
given data correspond to 0 ~ 25 ~ . The shape of the curve agrees quite well, very insignifi- 
cantly differing at the maxima. With an increase in 0, the difference in the distributions 
increases. A typical shape of amplitude functions of the vortex (2.5) is shown in Fig. 2 
for the same 0 and <d = ~t = 0.02. It appeared that, all other conditions being the same, 
the strength of the vortex induced by three-dimensional waves is approximately 5 times more 
than that determined by forces ~-dT " Similar relations are also observed for other param- 
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eters Kd and mt. Vortex structures for certain interesting ratios of Kd and <t are shown in 
Fig. 3. When the plane wave dominates in the flow (Kd/Kt = 20, Fig. 3a), a very weak vortex 
[~max(Z ~ T/4) = 0.001] occupies the position 0 ! z ! T/2, quite symmetrically distributed 
in the flow field. The growth in amplitude of three-dimensional waves (Kd/K t = I0, Fig. 3b) 
destroys the symmetry in distribution (stream function ~ = const are concentrated in regions 
of small z) and increases ~max(Z ~ T/6) = 0.003. In regions K d ~ K t (Fig. 3c), the vortex 
structure becomes complex, being enriched by weaker counter-rotating vortex which forces out 
the first from the regions T/3 < z < T/2. The strength of the initial vortex in this case 
is a maximum ~max(Z ~ T/8) = 0.T25,-and for the additional vortex ~max(Z ~ 3T/8) = 0.09. The 
domination of oblique waves K t >> K d (Fig. 3d) leads to diagrams shown in [8], i.e., to sym- 
metrically located and distributed pair dividing in z = T/4 with ~max(z = T/8) ~ 0.i. 

According to experiments [12], a change in sign of the total transverse velocity was ob- 
served very close to the wall under certain flow conditions. This change in W was inter- 
preted as the appearance of weak wall vortices, lying below the critical layer, which are 
subjected to the influence of the wall. For Re, and e ~ 25~ such a situation exists when 
K d = 0.05 in the range i0 < Kd/K t < 25 (Fig. 4). An increase in e at fixed Re leads to a 
decrease in the limiting amplitude Kd for which this condition is possible, but the necessary 
condition for the appearance of the complex structures is the dominant presence of plane 
waves that is expressed in the conservation of the range of KdK t of its existence. For the 
lower branch of the neutral curve at Re ~ 103 such a condition is met by the values Kd = 0.01, 

8 ~ 50 ~ and 7 ~ Kd/K t ~ ii. 

Such a detailed analysis of vortex structures helps in supplementing [7] by quantitative 
relations and shows that within the framework of linear theory, descriptions of the phenomena 
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either from the position of mean flows or from the position of perturbation technique with 
weak nonlinear theory are completely identical and topologically agree with experimentally 
observed thin layer of secondary flow. 

It appeared that the presence of coherent structures in the boundary layer in the form 
of longitudinal vortices causes the following redistribution of mass and momentum: at cer- 
tain spatial locations vortices entrain low-speed wall layer, carry it to the outer flow re- 
gion, which is accompanied by a decrease in fullness of local distributions U(n, z). In 
other regions an opposite phenomenon occurs, viz., vortices bring fluid from the potential 
core of the flow as a result of which the fullness of near-wall layers increases. Such a 
redistribution, obtained within the framework of (2.2a), is shown in Fig. 5 for K d = 0.005, 
~d/~t = i0, 5~ i, and 0.5 (a-d, respectively). Here the solid lines indicate laminar flow 
Uo = ~q, and the points indicate computed values of the maxima and minima of the curves 
U(n, z). 

The resulting picture of distortion in U is shown in Fig. 6 for 0 - 25 ~ and Kd/K t = 2, 
4, and l0 (solid and dashed lines and points). Figure 6a is for zd = 0.0025 and Fig. 6b is 
for ~d = 0.005. Solid, horizontal lines 1-3 represent laminar flow Uo for q = 1.5, I, and 
0.5, respectively. From this it is possible to obtain curves U(q, z) for any section z = 
const. For certain values of the parameter ~t in sections z = 0, profiles U(q, 0) have in- 
flection points which could be the cause for the local growth of disturbahces at these spa- 
tial locations. However, in the outer flow region it is not always possible to attain the 
undisturbed external flow velocity for the longitudinal profile U. This reflects the in- 
adequacy of the monoharmonic approximation in these regions. 

It is necessary to mention a few words on the growth time for the above phenomena. 
Since system (2.2) describes stationary or quasistationary flows, the method used in [13] to 
solve (2.2a) makes it possible to estimate the slow time tl and compare it with the rapid 
time t = 2~/aC of the wave process (i.i). It appeared that in order to establish the dis- 
tributions shown in Fig. 5, the flow should be subject to about 5 periods of rapid time. 
This relation decreases with increase in the angle e and wave amplitude ~t. Estimates for 
V and W are somewhat worse and here tl/t is estimated to a few tens. 

I. 
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THERMAL CONVECTION IN A HORIZONTAL LAYER WITH LATERAL HEATING 

A. G. Kurdyashkin, V. I. Polezhaev, 
and A. I. Fedyushkin 

UDC 536.252+532.5+532.68 

i. Introduction. We consider convection in a horizontal layer in a uniform gravita- 
tional field with a thermal gradient directed along the layer. Along with the well-known 
Rayleigh--Benard problem on the convection in a layer heated from below, this one of the funda- 
mental problems in the theory of thermal convection. Recently, there has been interest in 
this problem because of new experimental techniques, and various engineering and geophysical 
applications (transport processes during crystallization, in solar collectors, in shallow 
reservoirs, etc.). Because the state of hydrostatic equilibrium does not exist, unlike the 
case of heating from below, here convection is induced for any nonzero horizontal temperature 
difference. However, the intensity of convection and its effect on the temperature (or con- 
centration) field depends significantly on the length-to-width ratio of the layer, and the 
Rayleigh and Prandtl numbers. An essential role is played by the heat-exchange conditions 
at the upper and lower horizontal surfaces; these conditions vary widely in practice. Thus, 
there are a large number of different multiparameter convective processes whose study re- 
quires a mathematical model based on the Navier--Stokes equations, and a test of the adequacy 
of the model by comparison with experiment. 

The case most studied theoretically is the situation where identical (linear) temperature 
distributions are given along both horizontal boundaries. Several papers have considered the 
flow stability in this case for an infinitely long layer [i, 2]. Convection leads to an un- 
stable vertical temperature distribution at the lower and upper boundaries of the layer. 

In the present paper, we experimentally and theoretically study another case, where the 
horizontal boundaries of the layer are thermally insulated, and different temperatures are 
specified on the lateral walls. Then convection always leads to an unstable vertical temper- 
ature distribution, and this essentially changes the flow structure and heat transport. A 
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